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Treatment of a variety of substituted 2-aminobenzonitriles with formic acid under strong acid catalysis
provides the corresponding quinazolin-4(1H)-ones in good yield. A potential reaction pathway is described.
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Substituted quinazolin-4(1H)-ones (4-hydroxyquinazo-
lines) are key intermediates in the syntheses of a variety
of biologically active derivatives [1]. Historically, quin-
zolin-4(1H)-ones have been prepared by the Neimen-
towski reaction of anthranilic acids [2]. Other literature
methods [3] include cyclization of orthoesters [4], Gold’s
reagent [5] and ethoxymethylenemalononitrile [6] with
o-aminobenzamides. The aminolysis of benzoxazinones
has also been utilized [7]. A recent report describes the
synthesis of quinazoline derivatives via a palladium cat-
alyzed reductive cyclization method [8].

We would like to describe a new cyclization reaction of
aryl substituted 2-aminobenzonitriles (1) which affords
good yields of quinazolin-4(1H)-ones (2). Substituted 2-

Table 1
Cyclization of Substituted 2-Aminobenzonitriles

aminobenzonitriles are often more readily accessible syn-
thetic targets than the corresponding anthranilic acids [9].
This new cyclization is operationally simple and delivers
the desired products in good purity following dilution of
the reaction mixture with water [10]. The preparative
value of the reaction is evident from the entries in Tables
I, II and III.

From a mechanistic view point, the current reaction is
also of considerable interest. Quantitative monitoring of the
reaction by an internal standard gas chromatography
method reveals rapid disappearance of 2-aminobenzonitrile
1d (Scheme I) with complete conversion to quinazolin-
4(1H)-one 2d within twenty minutes. One can envision
several reasonable reaction pathways all leading the
observed product. For example, rapid nitrile hydrolysis, N-
formylation with formic acid followed by cyclization/-
dehydration. However, exposure of 2-amino-3-fluorobenza-
mide (3) to the reaction conditions does provide 2d but at a
reduced rate compared with that of the cyclization reaction

1 1 (o]
R[\:I H,SO, or CH3S0;H }\jﬁﬁv (Scheme I). Thus, we conclude that this is not the primary
// NH, 88% formic acid, 110°C // If)
R2 R2 H Table III
1 2 Analytical Data for Quinozolin-4(1 H)-ones 2a-h
: Analysis
Enuy R R2 Product (% yield*) Entry MP°C  Formula Found ¢ Calcd.
la H 3-CH, 2a  (86%) C H N C H N
1b H -NO
lc H g-OCIZ{ icb g?gg 2a  253-254 CyHgN,O 678 50 172 67.48 503 17.49
1d H 3F 3 24 (88%) 2b 282-284 CgHsN3;0; 503 24 21.6 5027 2.64 21.98
le H 3-Q 2 (68%) 2c  245-246 CyHgN,O, 614 45 157 61.36 4.58 15.90
If H 5q A (84%) 2d 272-273 CgHsFN,O 585 26 168 5854 3.07 17.07
ig H 6C 2 (94%) 2¢ >300 CgHsCIN,O 534 25 153 5321 2.79 1551
ih 3-F 5 2h  (63%) 2f 268 CsHsCIN,O 534 25 153 5321 2.79 1551
2g 219 CsHsCIN,O 531 2.6 154 5321 2.79 15.51
2 isolated, unoptimized yields 2h >300 CgHCIFN,O 484 1.8 13.8 48.39 2.03 14.11
Table II

Spectral Properties of Quinazolin-4(1H)-ones 2a-h

Enry Mp©°C Proton NMR (delta in ppm, J in Hz) Formula HRMS (70 eV, m/e)

calcd. found
2a  252-53 2.53 (s, 3H), 7.40 (apparent t,J =7, 1H), 7.68 (d,] =7, 1H), 7.96 (d,J = 8, 1H), 8.12 (s, 1IH)  CoHN,0O 160.0637 160.0636
2b  decomp. 7.86 (d,7=9, 1H), 8.31 (s, 1H), 8.55 (dd, ¥ = 9,3, 1H), 8.80 (d, T = 3, 1H) CgHsN;04 191.0331 191.0320
2c 24445 3.86 (s, 3H), 7.40 (4d,J =9, 2, 1H), 7.50 (d, T =2, 1H), 7.61 (d, J = 9, 1H), 8.00 (s, 1H) CgHgN»O, 176.0586 176.0589
24 272273 7.50 (m, 1H), 7.67 (apparent t, ] = 4, 1H), 7.92 (d, J = 8, 1H), 8.14 (s, 1H) CgHsFN,O 164.0385 164.0387
2 296-99 750 (t,J=8,1H),7.97 (dd,J =7, 1, 1H), 8.08 (dd, J = 8, 1, 1 H), 8.22 (s, 1H) CgH;CIN,O 180.0090 180.0089
2 235-45(d) 7.69 (d,J=8, 1H),7.85 (dd, J = 8,2, 1H), 8.06 (d, T =2, 1H), 8.15 (s, 1H) CgHsCIN,O 180.0090 180.0087
2 279 7.64(d,J=8, 1H),7.67 (d,J =8, 1H), 7.83 (1, T = 8, 1 H), 8.70 (s, 1H) CsHsCIN,O 180.0090 180.0085
2h  >300 7.45 (m, 1H), 7.65 (d, J = 2, 1H), 8.18 (s, 1H) CsH,CIFN,0 197.9994 197.9990



2052

reaction pathway. Replacing formic acid with the much less
nucleophilic trifluoroacetic acid affects hydrolysis to 3 at a
diminished rate compared to the cyclization reaction.
Although this data is not conclusive, we propose a potential
reaction pathway (Scheme II) which involves initial acid
catalyzed addition of formic acid to the nitrile carbon fol-
lowed by rapid inter or intramolecular acyl transfer.
Cyclization/dehydration then affords 2d. The initial formic
acid addition product also hydrolyses to 3 which then more
slowly cyclizes to quinazolin-4(1H)-one 2d.

Scheme |
Rate of formation of 2d from 1d
(o] (o}
88% formic acid j‘ NH,
——— +
NH, H,804 (10%) N NH,
110°C a
1d 2d 3
Percent
Time

(miz) 14 24 3
s o0 91 9
18 0 9 9%

Rate of Formation of 2d From 3

NH, 88% formic acid N
T J

NH, HyS04 (10%) N
F 110°C F o H

Percent
Time
5 43 57
18 7 93

Rate of Formation of 3 from 1d

CN
88% TFA NH,
NH, H,S504 (10%) NH;
F 110°C
1d 3
Percent
Time
(min) 1d 3
5 95 5

18 76 24
140 20 80

EXPERIMENTAL

Melting points were determined using a Thomas Hoover cap-
illary melting point apparatus and are uncorrected. Proton nmr
spectra were obtained using a Bruker AC-300 instrument in
DMSO-dg with tetramethylsilane (TMS) as the internal stan-
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Scheme 11
A Possible Reaction Pathway
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dard. High resolution mass spectrometry (hrms) measurements
were made using a VG/Fisons autospec instrument with direct
exposure probe sample introduction. Reaction rate measure-
ments were made via gas chromatography on a Hewlett Packard
5890 instrument equipped with a flame ionization detector.
Analyses were conducted on a Restek Rtx-1701 column (15 m x
0.32 mm id, 0.25 micron film) under the following conditions:
temperature 1 = 80°C, time 1 = 1 minute, rate = 15°C/minute,
temperature 2 = 250°C. Reverse phase hplc analyses were con-
ducted on a Keystone Scientific Phenyl Hypersil-1 column (250
x 4.6 mm, 5 micron) using 50/50 acetonitrile/water (0.05%
orthophosphoric acid) as the eluent. The flow rate was 1.0
ml/min and detection was accomplished at 230 nm.

General Procedure for Cyclization.

The general procedure is exemplified by description of the
cyclization of 2-amino-3-fluorobenzonitrile (1d) to provide 8-
fluoroquinoazolin-4(1H)-one (2d). The 2-aminobenzonitrile (1d,
3.0 g, 22 mmoles) was added in portions [11] over 1 hour to a
mildly refluxing (oil bath temperature of 105-115°C) mixture of
88% formic acid (30 ml) and sulfuric acid (1.0 g). After an addi-
tional 15 minutes, the mixture was allowed to cool to ca. 60°C,
poured into ice water (100 ml) and allowed to stand cold for 15
minutes. The resulting precipitate was collected and washed
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well with water. Drying to a constant weight provided 2d as an
off white solid (3.17 g, 88%).

General Procedure for Rate Measurements.

To a refluxing mixture of 88 wt % carboxylic acid (8.7 g) and
sulfuric (1.0 g) was added 2d (300 mg, 1.71 mmoles) in one por-
tion. Weighed aliquots of the reaction mixture were taken at the
specified time (Scheme I) and added to N,N-dimethylformamide
containing a known amount of fluoranthene as the internal stan-
dard. A 0.5 micro liter sample was then analyzed by gc.
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